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A common criticism of continuous Galerkin finite element methods is their

perceived lack of conservation. This may in fact be true for incompressible

flows when advective, rather than conservative, weak forms are employed.

However, advective forms are often preferred on grounds of accuracy despite

violation of conservation. It is shown here that this deficiency can be eas-

ily remedied, and conservative procedures for advective forms can be devel-

oped from multiscale concepts. As a result, conservative stabilised finite ele-

ment procedures are presented for the advection-diffusion and incompressible

Navier-Stokes equations.
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1 Introduction

Conservation is a highly sort after property in numerical simulations of transport phe-

nomena. Global conservation is intuitively appealing and often used for validating a

computational model. A common criticism of continuous Galerkin methods is that they

are not globally or locally conservative. This misunderstanding arises from the problem

that it is not possible in the general case to set the weight function equal to unity in a con-

tinuous Galerkin method as the weight function must vanish where Dirichlet boundary

conditions are applied. Recently, this issue has been clarified by Hughes et al. [1], where

it is was shown that continuous Galerkin methods for advection-diffusion equations are

both globally and locally conservative.

For advection-diffusion problems, when the weak form is written in advective, rather

than conservative, form and the flow field is divergence-free (at least in an appropriate

weak sense), global conservation of the advected quantity is preserved. However, this

condition is not often satisfied by stable finite element methods based on the Galerkin

formulation and when the velocity field is computed from a pressure-stabilised finite ele-

ment formulation. This leads to a lack of conservation of the transported quantity, despite

the method being convergent.

It is shown here how global conservation can be preserved when using common sta-

bilised finite element methods through a small residual-based modification of existing

formulations. As a starting point, global conservation for stabilised methods applied to

the advection-diffusion equation is proven for the case where the advective velocity is

known to be solenoidal. The examination is then extended to the case where the velocity

comes from the solution of a stabilised incompressible flow problem and the weak form

is in the advective, rather than conservative, form. It is shown that satisfaction of the

inf-sup condition will, in general, preclude conservation for classical Galerkin methods,
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and stabilisation of the continuity equation in common stabilised finite element formu-

lations results in global conservation not being guaranteed. Considering the governing

equations in a multiscale context [2, 3] points the way to a formulation which is globally

conservative. The procedure is then generalised to the Navier-Stokes equations. It is again

shown that the addition of particular residual-based terms to the stabilised formulation

leads to correct conservation of momentum. Implementation of the procedures requires

only minor additions to existing stabilised finite element codes.

2 Conservation for the scalar advection-diffusion equation

2.1 Strong and weak forms

Before examining conservation properties, it is useful to define carefully the problem (for

background, see Hughes et al. [4]). Consider Ω, an open, bounded region in R
d, where d

is the spatial dimension. The boundary of Ω is denoted by Γ = ∂Ω, and the outward unit

normal to Γ is denoted n = (n1, n2, . . . , nd). Given a solenoidal advective velocity field a

(∇ · a = 0), consider the following definitions:

an = n · a (1)

a+
n =

an + |an|

2
(2)

a−n =
an − |an|

2
. (3)

Note that a+
n is equal to an at an outflow boundary, and is equal to zero at an inflow

boundary. Conversely, a−n is equal to an at an inflow boundary, and is equal to zero at an

3



][

][

Γ−

Γ+
Γg

Γh

][

][
][

][

Γ−

Γh

Γ−
h

g

g

+

Γ+

][

][

Figure 1: Definition of boundary partitions.

outflow boundary. Let {Γ−, Γ+} and {Γg, Γh} be partitions of Γ, defined by:

Γ− = {x ∈ Γ | an (x) < 0} inflow boundary (4)

Γ+ = Γ − Γ− outflow boundary (5)

and

Γ±
g = Γg ∩ Γ± (6)

Γ±
h = Γh ∩ Γ±. (7)

The various partitions are illustrated in Figure 2.1.

Denoting the diffusivity as κ, which is assumed to be constant and positive (κ > 0), the

4



following fluxes are defined:

σ
a (φ) = −aφ (8)

σ
d (φ) = κ∇φ (9)

σ = σ
a + σ

d (10)

σa
n = n · σ

a (11)

σd
n = n · σ

d (12)

σn = n · σ. (13)

Advective-diffusive transport of a scalar φ is assumed to be governed by:

−∇ · σ (φ) = f in Ω (14)

φ = g on Γg (15)

−a−n φ + σd
n (φ) = h on Γh (16)

where f : Ω → R, g : Γg → R and h : Γh → R are prescribed. The boundary condition on

Γh can be interpreted as:

h =















h− on Γ−
h

h+ on Γ+
h

(17)

where h− is the total flux and h+ is the diffusive flux,

σn (φ) = h− total flux boundary condition (18)

σd
n (φ) = h+ diffusive flux boundary condition. (19)

For the variational formulation of the advection-diffusion equation, the following func-
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tion spaces are required:

S =
{

φ ∈ H1 (Ω) | φ = g on Γg

}

(20)

V =
{

w ∈ H1 (Ω) | w = 0 on Γg

}

. (21)

It is useful to define another function space W , such that

H1 (Ω) = V ⊕W (22)

The standard variational problem for advection-diffusion consists of: find φ ∈ S such that

B (w, φ) = L (w) ∀ w ∈ V (23)

where

B (w, φ) = (∇w, σ(φ))Ω +
(

w, a+
n φ
)

Γh
(24)

and

L (w) = (w, f )Ω + (w, h)Γh
. (25)

Consistency of the variational form is easily proven by integrating equation (23) by

parts,

0 = B (w, u) − L (w)

= − (w,∇ · σ(φ) + f )Ω +
(

w,−a−n + σd
n (φ) − h

)

Γh

(26)

which, under suitable smoothness hypotheses, implies the original strong form of the

governing boundary-value problem. Stability can be proven by showing that B (w, φ) is
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coercive,

B (w, w) = (∇w,−aw + κ∇w)Ω +
(

w, a+
n w
)

Γh

=
1
2

(w, (∇ · a) w)Ω −
1
2

(w, anw)Γh
+ κ‖∇w‖2

Ω +
(

w, a+
n w
)

Γh

=
1
2

(w, (∇ · a) w)Ω + κ‖∇w‖2
Ω +

1
2

∥

∥

∥
|an|

1/2 w
∥

∥

∥

2

Γh
.

(27)

If the advective field is divergence-free, equation (27) is equivalent to:

B (w, w) = κ‖∇w‖2
Ω +

1
2

∥

∥

∥
|an|

1/2w
∥

∥

∥

2

Γh
(28)

which proves that the stability is assured. The boundary conditions considered here were

described in Hughes et al. [4], and they result in a well-posed variational problem if the

flow field is divergence-free.

Proving conservation for the weak form of the advective-diffusion equation in both

conservative and advective formats is straightforward for the case Γg = ∅. Considering

equation (23) and setting w = 1,

0 = B (1, φ) − L (1)

=

∫

Γ

a+
n φ dΓ −

∫

Ω

f dΩ −

∫

Γ

h dΓ,
(29)

which can also be expressed as:

0 = −

(
∫

Γ+

(

−anφ + h+
)

dΓ +

∫

Γ−
h− dΓ +

∫

Ω

f dΩ

)

(30)

which proves that φ is conserved (recalling that h+ is the diffusive flux, hence (h+ − anφ) |Γ+

is the total flux, and h− is also the total flux). Establishing conservation for the case Γg 6= ∅

is more complicated as it is not possible to set w = 1 in the entire domain since w must be
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equal to zero on Γg. Proving conservation requires the definition of an auxiliary flux hg

on the boundary Γg [1]. Consider the problem: find φ ∈ S and hg ∈ W such that

B (w, φ) = L (w) +
(

w, hg
)

Γg
∀ w ∈ H1 (Ω) . (31)

Recalling equation (22), this problem can be alternatively expressed as: find φ ∈ S and

hg ∈ W such that

B (w, φ) = L (w) ∀ w ∈ V (32)

B (q, φ) = L (q) +
(

q, hg
)

Γg
∀ q ∈ W . (33)

Setting w = 1 in equation (31), which is possible since 1 ∈ H1 (Ω),

0 = B (1, φ) − L (1) −
(

1, hg
)

Γg

= −

(

∫

Γ+
h

(

−anφ + h+
)

dΓ +

∫

Γ−
h

h− dΓ +

∫

Ω

f dΩ +

∫

Γg

hg dΓ

) (34)

which proves that φ is conserved.

Conservation has been shown above for the weak form of the advection-diffusion equa-

tion in conservation form, with no reliance on the field a being divergence-free. From the

identity:

∇ · (aφ) = (∇ · a) φ + a · ∇φ (35)

and assuming ∇ · a = 0, the weak advection-diffusion equation in advective format is

expressed as:

Ba (w, φ) = (w, a · ∇φ)Ω + (∇w, κ∇φ)Ω − (w, anφ)Γg
−
(

w, a−n φ
)

Γh
(36)
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where the subscript ‘a’ has been added to denote the advective format. Considering the

advective form and setting w = 1 for the case Γg 6= ∅,

0 = Ba (1, φ) − L (1) −
(

w, hg
)

Γg

= − (1, (∇ · a) φ)Ω + (1, anφ)Γ − (1, anφ)Γg
−
(

1, a−n φ
)

Γh
− (1, f )Ω − (1, h)Γh

−
(

1, hg
)

Γg

= − (1, (∇ · a) φ)Ω +
(

1, a+
n φ
)

Γh
− (1, f )Ω − (1, h)Γh

−
(

1, hg
)

Γg

= −

(

∫

Ω

(∇ · a) φ dΩ +

∫

Γ+
h

(

−anφ + h+
)

dΓ +

∫

Γ−
h

h− dΓ +

∫

Γg

hg dΓ +

∫

Ω

f dΩ

)

,

(37)

hence φ is conserved if ∇ · a = 0.

2.2 Conservation in Galerkin and stabilised Galerkin formulations

Conservation for the case in which Dirichlet boundary conditions are applied (Γg 6= ∅) in

a Galerkin formulation can be proven in a similar way to the infinite-dimensional case in

the previous section. To prove conservation, again an auxiliary flux must be defined on

Γg [1]. Consider now S h ⊂ S and Vh ⊂ V to be finite element spaces. The space S h con-

tains basis functions, each associated with a node, which satisfy the Dirichlet boundary

conditions (technically speaking, S h is a linear manifold, not a linear space). The space

Vh is the span of the basis functions associated with each node in Ω̄ excluding those lying

on Γg. A complementary space W h is defined which is the span of of the basis functions

associated with all nodes lying on Γg. It is assumed that the support of the traces of func-

tions in Wh is contained in Γg. A further space X h is defined as:

X h = Vh ⊕Wh. (38)

Hence, X h is the span of the shape functions associated with all nodes. Note that S h ⊂ X h.
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For generality, conservation will be shown for the case of stabilised methods, which are

a superset of the Galerkin method. The domain Ω is subdivided into ‘elements’ Ω e, and

the domain of element interiors Ω̃ is defined as:

Ω̃ =
⋃

e
Ωe (39)

which does not include the element boundaries.

The standard Galerkin problem consists of: find φh ∈ Sh such that

B
(

wh, φh
)

= L
(

wh
)

∀ wh ∈ Vh. (40)

A class of stabilised Galerkin methods can be expressed as:

B
(

wh, φh
)

+
(

Lawh, τar
)

Ω̃
= L

(

wh
)

∀ wh ∈ Vh (41)

in which r is the residual of the advection-diffusion equation,

r = a · ∇φh − κ∆φh − f , (42)

τa is a stabilisation parameter and La is an operator which defines the stabilisation method.

For the streamlined-upwind Petrov-Galerkin method (SUPG) [5], La is given by:

Lawh = a · ∇wh. (43)

For the Galerkin/least-squares method (GLS) [4],

Lawh = a · ∇wh − κ∆wh (44)
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and for the multiscale method (MS) [2, 6]

Lawh = a · ∇wh + κ∆wh. (45)

Expressions for τa may be found in References [7–11].

Proving conservation for the case Γg = ∅ for the presented stabilised Galerkin methods

is trivial as the stabilisation term involves the gradient of wh, which vanishes when setting

wh = 1 everywhere in Ω. For the non-trivial case of Γg 6= ∅, consider the following

Galerkin problem: find φh ∈ Sh and hh
g ∈ Wh such that

B
(

wh, φh
)

+
(

Lawh, τar
)

Ω̃
= L

(

wh
)

+
(

wh, hh
g

)

Γg
∀ wh ∈ X h (46)

where hh
g is the flux across Γg. This problem can be split, yielding: find φh ∈ Sh and

hh
g ∈ Wh such that

B
(

wh, φh
)

+
(

Lawh, τar
)

Ω̃
− L

(

wh
)

= 0 ∀ wh ∈ Vh (47)

B
(

qh, φh
)

+
(

Laqh, τar
)

Ω̃
− L

(

qh
)

=
(

qh, hh
g

)

Γg
∀ qh ∈ Wh. (48)

Equation (47) is the standard stabilised advection-diffusion problem, which can be solved

without knowing hg . Once φh has been computed from equation (47), it can be inserted

into equation (48) to calculate the auxiliary flux, which is merely a post-processing proce-

dure (see Hughes et al. [1] and the references therein).

Conservation for the case Γg 6= ∅ can be proven by setting wh = 1 in equation (46) (note
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that wh = 1 ∈ X h, irrespective of the boundary conditions),

0 = B
(

1, φh
)

+ (La1, τar)Ω̃ − L (1) −
(

1, hh
g

)

=

∫

Γh

a+
n φh dΓ −

∫

Γh

h dΓ −

∫

Ω

f dΩ −

∫

Γg

hh
g dΓ

= −

(

∫

Γ+
h

(

−anφh + h+
)

dΓ +

∫

Γ−
h

h− dΓ +

∫

Ω

f dΩ +

∫

Γg

hh
g dΓ

)

(49)

which proves that Galerkin and the considered stabilised Galerkin finite element meth-

ods are globally conservative. While the present arguments are of a global nature, the

same procedure can be extended to local subdomains consisting of individual elements

or unions of elements, thus establishing that continuous Galerkin and stabilised Galerkin

methods are also locally conservative [1].

Thus far, it has been assumed that a is solenoidal. Consequently, the conservative and

advective forms of the weak advection-diffusion equations are interchangeable. Often,

the advective form is preferred in practice. However, a problem arises in the advective

form when a is computed numerically from another equation, such as the incompressible

Navier-Stokes equations, and fails to satisfy the divergence-free condition. In this case,

(

wh, a · ∇φh
)

Ω
= −

(

∇wh, aφh
)

Ω
−
(

wh, (∇ · a) φh
)

Ω
+
(

wh, anφh
)

Γ
(50)

in which the term involving ∇ · a is not identically zero. For conservation to hold, the

term involving ∇ · a in equation (50) must vanish when wh = 1. That is,

∫

Ω

(∇ · a) φh dΩ = 0. (51)

In a Galerkin finite element method for the incompressible Navier-Stokes equations, this

condition will be satisfied when the space of pressure interpolations P h contains X h, be-

12



cause, in this case, the discrete approximation of incompressibility is given by:

∫

Ω

qh (∇ · a) dΩ = 0 ∀ qh ∈ Ph (52)

which implies that equation (51) holds as P h ⊇ X h. Unfortunately, P h + X h is often

the case due to restrictions imposed by the inf-sup condition (see Brezzi and Fortin [12]).

Furthermore, it is a common practice to use some form of pressure stabilisation in which

case equation (52) definitely will not hold. In order to construct conservative methods

for these cases, an approach based on multiscale considerations proves fruitful, and is

pursued herein.

2.3 Conservation when using a computed flow field from a stabilised Galerkin

method

To construct a conservative advection-diffusion scheme for cases when the advective flow

field comes from a numerical simulation, the starting point is a multiscale decomposition

of the advective flow field. Following the multiscale concept [2, 3], the velocity field is

decomposed additively,

a = ā + a′ (53)

where ā is the ‘coarse’ scale component of the velocity field and a ′ is the ‘fine’ scale com-

ponent of the velocity field. It is assumed that a = ā on Γ. Returning to equation (50) and

inserting the multiscale decomposition,

(w, a · ∇φ)Ω =
(

w,
(

ā + a′
)

· ∇φ
)

Ω

= (w,∇ · (āφ))Ω − (w, (∇ · ā) φ)Ω +
(

w, a′ · ∇φ
)

Ω
.

(54)
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Integrating the first term by parts on the right-hand side of equation (54), and considering

that a = ā on Γ,

(w, a · ∇φ)Ω = − (∇w, āφ)Ω + (w, anφ)Γ − (w, (∇ · ā) φ)Ω +
(

w, a′ · ∇φ
)

Ω
. (55)

Inserting this expression into the advective form of the advection-diffusion equation (36)

and including the boundary conservation term,

0 =Ba (w, φ) − L (w) −
(

w, hg
)

Γg

= − (∇w, āφ)Ω + (w, anφ)Γ − (w, (∇ · ā) φ)Ω +
(

w, a′ · ∇φ
)

Ω

+ (∇w, κ∇φ)Ω − (w, anφ)Γg
−
(

w, a−n φ
)

Γh
− (w, f )Ω − (w, h)Γh

−
(

w, hg
)

Γg
.

(56)

Setting w = 1,

0 =
(

1, a+
n φ
)

Γh
− (1, (∇ · ā) φ)Ω +

(

1, a′ · ∇φ
)

Ω
− (1, f )Ω − (1, h)Γh

−
(

1, hg
)

Γg
(57)

which can be equivalently expressed as:

0 = −

(

∫

Γ+
h

(

−anφ + h+
)

dΓ +

∫

Ω

f dΩ +

∫

Γ−
h

h− dΓ +

∫

Γg

hg dΓ

+

∫

Ω

(∇ · ā) φ dΩ −

∫

Ω

a′ · ∇φ dΩ

)

. (58)

From the above equation, it is clear that (58) reduces to (34), and φ is conserved, if the last

two terms cancel. That is, if:

∫

Ω

(

(∇ · ā) φ −∇φ · a′
)

dΩ = 0. (59)
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Requiring that:

∫

Ω

(

q (∇ · ā) −∇q · a′
)

dΩ = 0 ∀q ∈ H1 (Ω) (60)

ensures that equation (59) holds, and conservation is guaranteed. From multiscale con-

siderations and in light of the connection to stabilised finite element methods [2, 3], an

approximation of the fine scale velocity on element interiors is given by [2]:

a′ ≈ −τpr (61)

where τp is a stabilisation parameter (pressure stabilisation) and r is the residual from

the equation governing the advective flow field (e.g., the incompressible Navier-Stokes

equations). Considering now that ā is represented by the finite-dimensional solution ah,

inserting the model for a′ into equation (60) yields:

(

qh,∇ · ah
)

Ω
+
(

∇qh, τpr
)

Ω̃
= 0 ∀ qh ∈ Ph (62)

which is the pressure-stabilised continuity equation for the SUPG, GLS and MS methods.

Hence, a conservative form for advection-diffusion, in advection format, for problems

involving an advective velocity field which satisfies equation (62) and P h ⊇ Sh, is given

by:

(

wh, ā · ∇φh
)

Ω
+
(

∇wh, κ∇φh
)

Ω
−
(

wh, anφh
)

Γg
−
(

wh, a−n φh
)

Γh

−
(

wh, τpr · ∇φh
)

Ω̃
=
(

wh, f
)

Ω
+
(

wh, h
)

Γh
+
(

wh, hh
g

)

Γg
∀wh ∈ X h. (63)

The last term on the right-hand side of equation (63) has the form of an advection term,

hence, in addition to the usual advective term, it too needs to be stabilised. A stabilised,
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conservative formulation is given by:

(

wh, ā · ∇φh
)

Ω
+
(

∇wh, κ∇φh
)

Ω
−
(

wh, anφh
)

Γg
−
(

wh, a−n φh
)

Γh

+
(

Lāwh, τa r
)

Ω̃
+
(

wh, a′ · ∇φh)

Ω̃
+
(

L′
awh, τ′

(

a′ · ∇φh))

Ω̃

=
(

wh, f
)

Ω
+
(

wh, h
)

Γh
+
(

wh, hh
g

)

Γg
∀wh ∈ X h (64)

where a′ = −τpr, τ′ is a stabilisation parameter for the fine-scale term, and

L′
a (·) = a′ · ∇ (·) = −τpr · ∇ (·) (65)

Lāwh =































ā · ∇wh (SUPG)

ā · ∇wh − κ∆wh (GLS)

ā · ∇wh + κ∆wh (MS).

(66)

The first term in the box is the key to conservation, while the second term in the box

stabilises the first and does not affect conservation. The second term in the box can be

equivalently expressed as:

(

L′
awh, τ′

(

a′ · ∇φh
))

Ω̃
=
(

L′
awh, τ′L′

aφh
)

Ω̃
(67)

which elucidates its symmetric, positive-definite nature. Note that the required modifica-

tions to an existing computer code for stabilised Galerkin methods to ensure conservation

are minor.

Remark

The boxed terms are consistent modifications of the method due to the fact that r is a

residual vanishing for the exact solution. The stabilisation parameter, τ ′, is O (h/|a′ |) =
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O
(

h/
(

τp|r|
))

. Consequently, the additional term vanishes when r = 0. A more precise

expression for τ′ is presented in Taylor et al. [13]. �

2.4 Time-dependent case

For generality, the preceding developments are extended to the unsteady case. Consider

the following space-time domains:

Q = Ω×]0, T[ (68)

Q̃ = Ω̃×]0, T[ (69)

P = Γ×]0, T[ (70)

Pg = Γg×]0, T[ (71)

Ph = Γh×]0, T[ (72)

P+
h = Γ+

h ×]0, T[ (73)

P−
h = Γ−

h ×]0, T[. (74)

Solution of the unsteady advection-diffusion equation involves: find φ = φ (x, t) ∀x ∈

Ω, ∀t ∈ [0, T] such that:

∂φ

∂t
−∇ · σ (φ) = f in Q (75)

φ (x, 0) = φ0 in Ω (76)

φ = g on Pg (77)

−a−n φ + σd
n (φ) = h on Ph (78)

where f : Q → R, g : Pg → R and h : Ph → R are prescribed.

For the discrete problem, the space-time domain Q is divided into ‘time slabs’. Consider
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the following space-time slabs,

Qn = Ω×]tn, tn+1[ (79)

Q̃n = Ω̃×]tn, tn+1[ (80)

Pn = Γ×]tn, tn+1[ (81)

Pn
g = Γg×]tn, tn+1[ (82)

Pn
h = Γh×]tn, tn+1[ (83)

P+n
h = Γ+

h ×]tn, tn+1[ (84)

P−n
h = Γ−

h ×]tn, tn+1[ (85)

where 0 = t0 < t1 < . . . < tN = T. The relevant function spaces on each slab are similar

to those for the steady case, with infinite dimensional spaces defined by:

Sn =
{

φ ∈ H1 (Qn) | φ = g on Pn
g

}

(86)

Vn =
{

w ∈ H1 (Qn) | w = 0 on Pn
g

}

(87)

H1 (Qn) = Vn ⊕Wn (88)

and relevant finite-dimensional spaces defined by:

(Sn)h ⊂ Sn (89)

(Vn)h ⊂ Vn (90)

(Sn)h ⊂ (X n)h = (Vn)h ⊕ (Wn)h . (91)
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Solution of the unsteady problem requires: find φh ∈ (Sn)h such that,

(

wh (t−n+1
)

, φh (t−n+1
)

)

Ω
−

(

∂wh

∂t
, φh
)

Qn
+
(

wh, ā · ∇φh
)

Qn
+
(

∇wh, κ∇φh
)

Qn

−
(

wh, anφh
)

Pn
g

−
(

wh, a−n φh
)

Pn
h

+
(

Lāwh, τar
)

Q̃n

+
(

wh, a′ · ∇φh)

Qn +
(

L′
awh, τ′

(

a′ · ∇φh))

Q̃n

=
(

wh, f
)

Qn
+
(

wh, h
)

Pn
h

+
(

wh, hh
g

)

Pn
g

+
(

wh (t+n
)

, φh (t−n
)

)

Ω

∀wh ∈ (X n)h , n = 0, 1, . . . , N − 1 (92)

where a′ = −τpr, the operator L′
a is defined by equation (65), and

Lāwh =































∂wh

∂t
+ ā · ∇wh (SUPG)

∂wh

∂t
+ ā · ∇wh − κ∆wh (GLS)

∂wh

∂t
+ ā · ∇wh + κ∆wh (MS).

(93)

The boxed terms are the same as for the steady-state case (see equation (64)). Considering

∫

Qn
(∇ · ā) φh dQ +

∫

Q̃n
τpr · ∇φh dQ = 0, (94)

which holds when ā is computed from a pressure-stabilised finite element method and

components of the advective velocity field āi come from the same space as φh, and setting

wh = 1 in equation (92),

∫

Ω

φh (t−n+1
)

dΩ =

∫

Ω

φh (t−n
)

dΩ +

∫

Pn
g

anφh dP +

∫

Pn
h

a−n φh dP +

∫

Qn
f dQ

+

∫

Pn
h

h dP +

∫

Pn
g

hh
g dP −

∫

Qn
ā · ∇φh dQ +

∫

Qn
τpr · ∇φh dQ. (95)
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Expanding the term involving ā and considering equation (94),

∫

Ω

φh (t−n+1
)

dΩ =

∫

Ω

φh (t−n
)

dΩ +

∫

P+n
h

(

−anφh + h+
)

dP

+

∫

P−n
h

h− dP +

∫

Qn
f dQ +

∫

Pn
g

hh
g dP (96)

which shows that φh is conserved on space-time slabs.

3 Conservation for the incompressible Navier-Stokes equations

3.1 Incompressible Navier-Stokes equations

The developments in this section for the incompressible Navier-Stokes equations mirror

the developments for the advection diffusion equation. Before proceeding to the Navier-

Stokes equations, it is useful to establish some definitions. Denoting the velocity field u,

un = n · u (97)

u+
n =

un + |un|

2
(98)

u−
n =

un − |un|

2
, (99)

where, similar to before, u+
n is equal to un at an outflow boundary and zero elsewhere,

and u−
n is equal to un at inflow boundary and zero elsewhere. Let {Γ−, Γ+} and {Γg, Γh}

be partitions of Γ, defined by:

Γ− = {x ∈ Γ | un (x) < 0} inflow boundary (100)

Γ+ = Γ − Γ− outflow boundary (101)
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and, as before,

Γ±
g = Γg ∩ Γ± (102)

Γ±
h = Γh ∩ Γ±. (103)

The partitions of Γ are illustrated in Figure 2.1.

Assuming the kinematic viscosity to be constant and positive (ν > 0), the following

fluxes are defined:

σ
a (u, a, p) = −u ⊗ a − pI ‘advective’ flux (104)

σ
d (u) = 2ν∇su diffusive flux (105)

σ (u, a, p) = σ
a + σ

d total flux (106)

σ
a
n = n · σ

a (107)

σ
d
n = n · σ

d (108)

σn = n · σ (109)

where p is the pressure (divided by the density) and a is the advective velocity.

Solution of the steady Navier-Stokes equations involves: find u = u (x) , p = p (x) ∀x ∈

Ω such that:

−∇ · σ (u, u, p) = f in Ω (110)

∇ · u = 0 in Ω (111)

u = g on Γg (112)

−u−
n u − pn + σ

d
n (u) = h on Γh (113)

where f : Ω → R
d, g : Γg → R

d and h : Γh → R
d are prescribed. The boundary condition
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on Γh can be interpreted as:

h =















h− on Γ−
h

h+ on Γ+
h

(114)

where

σn (u, p) = h− momentum flux boundary condition (115)

−pn + σ
d
n (u, p) = h+ traction boundary condition. (116)

For the variational formulation of the Navier-Stokes equations, the following function

spaces are required:

S =

{

u ∈
(

H1 (Ω)
)d

| u = g on Γg

}

(117)

V =

{

w ∈
(

H1 (Ω)
)d

| w = 0 on Γg

}

(118)

P =
{

p ∈ L2 (Ω)
}

. (119)

The variational problem consists of: find u ∈ S , p ∈ P such that:

B ({w, q}; {u, p}, u) = L (w) ∀w ∈ V , ∀q ∈ P (120)

where

B ({w, q}; {u, p}, a) = (∇w, σ (u, a, p))Ω +
(

w, a+
n u
)

Γh
− (∇q, u)Ω + (q, un)Γ (121)

and

L (w) = (w, f )Ω + (w, h)Γh
. (122)
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Remark

If q and u are sufficiently smooth, − (∇q, u)Ω + (q, un)Γ = (q,∇ · u)Ω. It is assumed that

this is the case. For the finite element case, differentiability and continuity will be ad-

dressed more precisely. �

Consistency of the weak formulation with the strong form, namely equations (110) to

(113), can be proven by integrating equation (120) by parts, leading to:

0 = B ({w, q}; {u, p}, u) − L (w)

= − (w,∇ · σ (u, u, p) + f )Ω +
(

w,−u−
n u − pn + σ

d
n (u) − h

)

Γh
+ (q,∇ · u)Ω .

(123)

Stability requires that the form in equation (121) be coercive in the following sense. Setting

{u, p} = {w, q} and a = u in equation (121),

B ({w, q}; {w, q}, u) = (∇w,−w ⊗ u − qI + 2ν∇sw)Ω +
(

w, u+
n w
)

Γh
− (∇q, w)Ω

=
1
2

(w, (∇ · u) w)Ω −
1
2

(w, unw)Γh
+ 2ν‖∇sw‖2

Ω +
(

w, u+
n w
)

Γh

=
1
2

(w, (∇ · u) w)Ω +
1
2

(w, |un|w)Γh
+ 2ν‖∇sw‖2

Ω.

(124)

This can be restated as:

B ({w, q}; {w, q}, u) =
1
2

(w, (∇ · u) w)Ω +
1
2
‖|un|

1/2w‖2
Γh

+ 2ν‖∇sw‖2
Ω (125)

which, for the case of a divergence-free flow field (∇ · u = 0), guarantees stability of

the field w. However, analogous to the advection-diffusion equation, the problem is not

necessarily stable if the flow field is not divergence-free.
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3.2 Conservation of mass and momentum

Conservation of momentum is examined for the general case Γg 6= ∅. Analogous to the

advection-diffusion case, this requires the definition of a space W such that

(

H1 (Ω)
)d

= V ⊕W . (126)

The problem then involves: find u ∈ S , p ∈ P and hg ∈ W , where hg is the momentum

flux across Γg, such that

B ({w, q}; {u, p}, u) = L (w) +
(

w, hg
)

Γg
∀ w ∈

(

H1 (Ω)
)d

, ∀q ∈ P . (127)

Setting {w, q} = {ei , 0}, where ei is the canonical unit basis vector, in the above equation,

0 = B ({ei , 0}, {u, p}, u) − (ei, f )Ω − (ei, h)Γh
−
(

ei, hg
)

Γg

=

∫

Γh

u+
n ei · u dΓ −

∫

Ω

ei · f dΩ −

∫

Γh

ei · h dΓ −

∫

Γg

ei · hg dΓ.
(128)

This can be rewritten as

0 =

∫

Ω

ei · f dΩ +

∫

Γ−
h

ei · h− dΓ +

∫

Γ+
h

ei ·
(

−unu + h+
)

dΓ +

∫

Γg

ei · hg dΓ (129)

which proves that momentum is conserved. Setting {w, q} = {0, 1},

0 = B ({0, 1}, {u, p}, u) − (0, f )Ω −
(

0, hg
)

Γg
− (0, h)Γh

=

∫

Γ

un dΓ

(130)

which shows that mass is also conserved. Note that in proving conservation, no reliance

has been placed on the flow field being strictly divergence-free.
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3.3 Conservation for the advective form of the Navier-Stokes equations

In practice, the conservation form of the Navier-Stokes equations is rarely used in Galerkin

computations. Application of the conservation form results in spurious oscillations due

to the ∇ · u term in equation (124), which acts as a distribution of sinks and sources. To

achieve accuracy, the advective form of the Navier-Stokes equations has been found much

superior and is usually adopted. Using the identity:

∇ · (u ⊗ a) = a · ∇u + u (∇ · a) (131)

the conservation and advective forms of the Navier-Stokes equations are interchangeable

for an advective field a which is divergence-free everywhere in Ω.

Considering the advective term in the Navier-Stokes equations in isolation,

− (∇w, u ⊗ a)Ω = (w, a · ∇u)Ω + (w, (∇ · a) u)Ω − (w, anu)Γ . (132)

Inserting equation (132) into equation (121), and assuming that a is divergence-free,

Ba ({w, q}; {u, p}, a) = (w, a · ∇u)Ω + (∇w,−pI + 2ν∇su)Ω −
(

w, a−n u
)

Γh

− (w, anu)Γg
− (∇q, u)Ω + (q, un)Γ (133)

which is the advective weak form of the Navier-Stokes equations. It is this form which is
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usually utilised in finite element analysis. Setting {w, q} = {e i, 0},

0 = Ba ({ei , 0}; {u, p}, u) − L (ei) −
(

ei, hg
)

Γg

= (ei, u · ∇u)Ω −
(

ei, u−
n u
)

Γh
− (w, unu)Γg

− (ei, f )Ω − (ei, h)Γh
−
(

ei, hg
)

Γg

= − (ei, (∇ · u) u)Ω + (ei, unu)Γ −
(

ei, u−
n u
)

Γh
− (ei, unu)Γg

− (ei, f )Ω − (ei, h)Γh
−
(

ei, hg
)

Γg

= − (ei, (∇ · u) u)Ω +
(

ei, u+
n u
)

Γh
− (ei, f )Ω − (ei, h)Γh

−
(

ei, hg
)

Γg
.

(134)

Equation (134) implies that for momentum to be conserved when using the advective

form of the Navier-Stokes equations, it is necessary that:

∫

Ω

ei · (∇ · u) u dΩ = 0 (135)

which resembles the weak form of the continuity equation, which requires that:

∫

Ω

q · (∇ · u) dΩ = 0 ∀ q ∈ P . (136)

Hence, satisfaction of weak continuity and requiring that:

P ⊇ H1 (Ω) (137)

guarantees that momentum will be conserved in the advection form of the Navier-Stokes

equations.

The difficulty that arises when adopting a Galerkin approach by replacing the relevant

infinite-dimensional function spaces with finite dimensional counterparts is that satisfac-
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tion of the inf-sup stability condition will, in general, require that [12]:

Ph + Yh (138)

where in a finite element context Y h is the span of the individual velocity shape func-

tion components associated with all nodes. Satisfaction of the inf-sup condition will in

general preclude momentum conservation. This is the case for Galerkin methods. For

stabilised Galerkin methods, equation (138) is often satisfied, but the continuity equation

is stabilised, hence a form other than (136) is employed. This in fact is a key advantage, as

will become clear.

3.4 Conservation in Galerkin and stabilised Galerkin formulations of the

Navier-Stokes equations – multiscale approach

Conservation can be restored to stabilised Galerkin methods in a relatively simple manner.

Consider again a multiscale decomposition of the advective flow field, a = ā + a ′, in

which ā is the coarse scale component and a′ is the fine scale component. As before,

a′ = 0 on Γ. Inserting the multiscale decomposition into equation (133),

Ba,ms ({w, q}; {u, p}, a) = Ba ({w, q}; {u, p}, ā) +
(

w, a′ · ∇u
)

Ω
(139)

A Galerkin procedure is now followed in which S h ⊂ S , Vh ⊂ V and Ph ⊂ P . It is

assumed that ā is uh ∈ Sh, and a′ is u′, which will be defined shortly. Similar to before, a

space Wh is defined, such that

Zh = Vh ⊕Wh (140)

where, by assumption, Z h =
(

Yh)d. A Galerkin procedure, including a multiscale de-

composition of the advective velocity, involves: find uh ∈ Sh, ph ∈ Ph and hh
g ∈ Wh such
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that:

Ba

(

{wh, qh}; {uh , ph}, uh
)

+
(

wh, u′ · ∇uh
)

Ω

= L
(

wh
)

+
(

wh, hh
g

)

Γg
∀ wh ∈ Zh, qh ∈ Ph. (141)

Inserting {wh, qh} = {ei, 0} into equation (141) leads to:

0 =Ba

(

{ei , 0}; {uh , ph}, u
)

+
(

ei, u′ · ∇uh
)

Ω
− L (ei) −

(

ei, hh
g

)

Γg

= −
(

ei,
(

∇ · uh
)

uh
)

Ω
+
(

ei, u′ · ∇uh
)

Ω
−
(

ei, h−
)

Γ−
h

−
(

ei,−uh
nuh + h+

)

Γ+
h

−
(

ei, hh
g

)

Γg
− (ei, f )Ω .

(142)

Hence, momentum is conserved if:

∫

Ω

ei ·
((

∇ · uh
)

uh − u′ · ∇uh
)

dΩ = 0, (143)

and this requirement is satisfied if:

∫

Ω

(

qh
(

∇ · uh
)

− u′ · ∇qh
)

dΩ = 0 ∀ qh ∈ Ph (144)

subject to the condition that P h ⊇ Yh. Hence, if the modified continuity equation in (144)

is satisfied and P h ⊇ Yh, the formulation in equation (141) conserves momentum.

The missing component to this point is the definition of the fine scale velocity. This

requires the supposition of a model. In the same vein as for the advection-diffusion prob-

lem, an approximation of the fine scale velocity on element interiors is introduced [2]:

u′ = −τpr (145)
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where r is the residual of the incompressible Navier-Stokes equation:

r = uh · ∇uh + ∇ph − 2ν∆uh − f . (146)

Inserting the expression for the model for the fine scales (145) into the modified continuity

equation (144) yields:

∫

Ω

(

qh
(

∇ · uh
)

+ ∇qh · τpr
)

dΩ = 0 ∀ qh ∈ Ph (147)

which is precisely the pressure-stabilised continuity equation. Therefore, a momentum

conserving, pressure-stabilised Galerkin formulation in advection format involves: find

uh ∈ Sh, ph ∈ Ph and hh
g ∈ Wh such that:

Ba

(

{wh, qh}; {uh , ph}, uh
)

+
(

∇qh, τpr
)

Ω̃
−
(

wh, τpr · ∇uh
)

Ω̃

= L
(

wh
)

+
(

wh, hh
g

)

Γg
∀wh ∈ Zh, ∀qh ∈ Ph. (148)

While the above formulation is conservative, it is not stabilised for advection dominated

flows. The following stabilised Galerkin problem is both stable and momentum conserv-

ing: find uh ∈ Sh, ph ∈ Ph and hh
g ∈ Wh

Ba

(

{wh, qh}; {uh , ph}, uh
)

+
(

∇qh, τpr
)

Ω̃
+
(

Lmwh, τmr
)

Ω̃

+
(

wh, u′ · ∇uh)

Ω̃
+
(

L′
mwh, τ′

(

u′ · ∇uh))

Ω̃

−
(

wh, hh
g

)

Γg
= L

(

wh
)

∀wh ∈ Zh, ∀qh ∈ Ph (149)

in which u′ = −τpr, and

L′
m (·) = u′ · ∇ (·) = −τpr · ∇ (·) . (150)
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The operator Lm defines the particular stabilisation method,

Lmwh =































uh · ∇wh (SUPG)

uh · ∇wh − 2ν∆wh (GLS)

uh · ∇wh + 2ν∆wh (MS).

(151)

As for the advection-diffusion case, the term introduced to provide conservation (the first

term in the box) is an advection term and is hence stabilised (second term in the box). The

second term in the box can be interpreted in the same fashion as equation (67). Appropri-

ate expressions for τp, τm and τ′ can be found in Taylor et al. [13], in which it is assumed

that τm = τp.

3.5 Time dependent case

Considering the space-time domains defined in equations (68)–(74), solution of the un-

steady Navier-Stokes equations involves: find u = u (x, t) , p = p (x, t) ∀x ∈ Ω, ∀t ∈ [0, T]

such that:

∂u
∂t

−∇ · σ (u, u, p) = f in Q (152)

u (x, 0) = u0 in Ω (153)

∇ · u = 0 in Q (154)

u = g on Pg (155)

−u−
n u − pn + σ

d
n (u) = h on Ph (156)

where f : Q → R
d, g : Pg → R

d and h : Ph → R
d are prescribed.

Considering the space-time ‘slabs’ defined in equations (79)–(85), the pertinent function
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spaces are:

Sn =

{

u ∈
(

H1 (Qn)
)d

| u = g on Pn
g

}

(157)

Vn =

{

w ∈
(

H1 (Qn)
)d

| w = 0 on Pn
g

}

(158)

Pn =
{

p ∈ L2 (Qn)
}

(159)
(

H1 (Qn)
)d

= Vn ⊕Wn (160)

and relevant subspaces are:

(Sn)h ⊂ Sn (161)

(Vn)h ⊂ Vn (162)

(Pn)h ⊂ Pn (163)

(Sn)h ⊂ (Zn)h = (Vn)h ⊕ (Wn)h . (164)

Solution of the unsteady problem requires: find uh ∈ (Sn)h , ph ∈ (Pn)h such that

(

wh (t−n+1
)

, uh (t−n+1
)

)

Ω
−

(

∂wh

∂t
, uh
)

Qn
+
(

wh, uh · ∇uh
)

Qn

+
(

∇wh,−pI + 2ν∇uh
)

Qn
−
(

wh, uh−
n u

)

Pn
h

−
(

wh, uh
nuh
)

Pn
g

−
(

∇qh, uh
)

Qn

+
(

qh, uh
n

)

Pn
−
(

wh, hh
g

)

Pn
g

+
(

wh, u′ · ∇uh)
Qn +

(

L′
mwh, τ′

(

u′ · ∇uh))
Q̃n

−
(

∇qh, u′
)

Qn
+
(

Lmwh, τmr
)

Q̃n
= L

(

wh
)

n

∀wh ∈ (Zn)h , ∀qh ∈ (Pn)h , n = 0, 1, . . . , N − 1 (165)

where

L
(

wh
)

n
=
(

wh, f
)

Qn
+
(

wh, h
)

Pn
h

+
(

wh (t+n
)

, uh (t−n
)

)

Ω
(166)
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and the fine scale velocity is given by u′ = −τpr and L′
m is defined by equation (150). The

operator Lm for the unsteady case is defined by:

Lmwh =































∂wh

∂t
+ uh · ∇wh (SUPG)

∂wh

∂t
+ uh · ∇wh − ν∆wh (GLS)

∂wh

∂t
+ uh · ∇wh + ν∆wh (MS).

(167)

The boxed terms are the same as for the steady-state case (see equation (149)). Considering

first {wh, qh} = {0, qh} and inserting the model u′ = −τpr,

0 = −
(

∇qh, uh
)

Qn
+
(

qh, uh
n

)

Pn
+
(

∇qh, τpr
)

Q̃n

=
(

qh,∇ · uh
)

Qn
+
(

∇qh, τpr
)

Q̃n
∀qh ∈ (Pn)h

(168)

which is equation (147), the weak form of the stabilised continuity equation.

Remark

Conservation of mass may be obtained from the first line of equation (168) by selecting

qh = 1. The integration-by-parts utilised in the second line of equation (168) assumes

that qh is continuous across element interfaces and exact quadrature is performed (uh is

always assumed to be continuous). If qh is discontinuous across element interfaces, the

first line of equation (168) requires additional pressure jump terms on element interfaces,

whereas the second line is still valid. This follows by performing integration-by-parts

element-wise:

(

qh,∇ · uh
)

Qn
= −

(

∇qh, uh
)

Q̃n
+
(

qh, uh
n

)

Pn
+ ∑

e

(

qh, uh
n

)

Pn
e

= −
(

∇qh, uh
)

Q̃n
+
(

qh, uh
n

)

Pn
+
(r

qhn
z

, uh
)

P̃n

(169)
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where

r
qhn

z
= qh

+n+ + qh
−n−

=
(

qh
+ − qh

−

)

n+

= −
(

qh
+ − qh

−

)

n−

(170)

in which J·K is the jump operator across element interfaces Γ̃,

Γ̃ =
⋃

e
Γe \ Γ, Pn

e = Γe×]tn, tn+1[ , P̃n = Γ̃×]tn, tn+1[ (171)

and the ± designations are arbitrary labels of quantities associated with two different

elements sharing an interface. Note that equation (170) is invariant under reversal of the

± labels. When inexact element quadrature is used for the continuous qh case, the form in

the first line of equation (168) is preferable because conservation is unaffected. This is not

necessarily the case with the form on the second line of (168). Perhaps because most code

developers are unaware of this fact, the second-line form is often employed in practice. �

Following the now familiar procedure of setting {wh , qh} = {ei , 0}, and inserting this

into the unsteady Navier-Stokes equation,

0 =Ba

(

{ei, 0}; {uh , ph}, uh
)

n
− L (ei)n −

(

ei, hh
g

)

Pn
g

=
(

ei, uh (t−n+1
)

)

Ω
+
(

ei, uh+
n uh

)

Pn
h

−
(

ei,
(

∇ · uh
)

uh
)

Qn
−
(

ei, τpr · ∇uh
)

Q̃n

−
(

ei, hh
g

)

Pn
g

− (ei, f )Qn − (ei, h)Pn
h
−
(

ei, uh (t−n
)

)

Ω
.

(172)
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Using the result in equation (168), the above equation is equivalent to:

∫

Ω

ei · uh (t−n+1
)

dΩ =

∫

Ω

ei · uh (t−n
)

dΩ +

∫

P+
h

n
ei ·
(

−uh
nuh + h+

)

dP

+

∫

P−
h

n
ei · h− dP +

∫

Pn
g

ei · hh
g dP +

∫

Qn
ei · f dQ (173)

which proves that for the time-dependent case conservation of momentum is attained on

space-time slabs.

4 Conclusions

The conservation properties of Galerkin and some common stabilised Galerkin schemes

for advection-diffusion and Navier-Stokes equations have been examined. It was shown

why advection-diffusion and Navier-Stokes problems based on advective weak forms,

computed from Galerkin and stabilised Galerkin finite element methods, are not gener-

ally conservative. It was however shown that, through multiscale considerations, this de-

ficiency can be easily overcome for stabilised methods by the addition of a residual term

to the weak equation which ensures global conservation. Surprisingly, conservation can

be restored more easily to stabilised Galerkin methods than traditional Galerkin methods.

The reason for this is that conservation is in conflict with the inf-sup condition associated

with incompressibility in the Galerkin formulation, whereas in stabilised formulations the

inf-sup condition is circumvented.

Stabilised, conservative formulations have been described and presented for: steady

advection-diffusion equation (equation (64)); unsteady advection-diffusion equation (equa-

tion (92)); steady incompressible Navier-Stokes equations (equation (149)); and unsteady

incompressible Navier-Stokes equations (equation (165)). The techniques described herein

have been extensively tested, and verified in several academic and commercial flow codes,
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including Spectrum [13] and Acusolve [14].

Similar issues are being investigated in the discontinuous Galerkin method literature.

The interested reader is referred to Cockburn et al. [15, 16].
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